Open in app

Sign In

Write

Sign In

Arthur Lee
Arthur Lee

22 Followers

Home

About

Jan 15

[Eng blog: Pinterest-3] How Pinterest Leverages Realtime User Actions in Recommendation to Boost Homefeed Engagement Volume

🤗 Machine learning Engineer blog challenge (3/100) Pinterest — 2022 How Pinterest Leverages Realtime User Actions in Recommendation to Boost Homefeed Engagement Volume | by Pinterest Engineering | Pinterest Engineering Blog | Medium 🤔 What problem do they solve? 他們想要找到一個single去抓出short-term user interest並且把它納入目前的Pins HomeFeed ranking model裡面,有了short-term user interest搭配ML application可以實現responsive的功能(app可以快速反應使用者的短期篇好,例如點了日本Feed,過幾秒刷新Feed,內容會多了日本Feed)

Pinterest

3 min read

[Eng blog: Pinterest-3] How Pinterest Leverages Realtime User Actions in Recommendation to Boost…
[Eng blog: Pinterest-3] How Pinterest Leverages Realtime User Actions in Recommendation to Boost…
Pinterest

3 min read


Nov 5, 2022

United Airline last name多了SR問題

摘要 這篇主要會談到,如何被UA系統坑了,ticket上名字多了”SR”,還有韓亞航空服務品質的經驗,還會介紹下次Action Item,如何避免 過程 幾個月前就定好了來回機票, 用UA點數訂的 回來的時候搭韓亞航空,發現在UA上面不能選位子, (ANA是可以),所以特別去韓亞航空官方網站用我的confirmation number去查,發現一直找不到,想說可能系統更新有delay,拖了一個月 今天又再次挑戰,直接打電話給韓亞航空,電話接上了,服務態度很差,過程中發現我的名字last name多了”SR”,所以不給過,我記得當時在UA訂票時候,我一直想改掉但一直不給改,本以為沒差,沒想到有差 後來打給UA,客服說如果是其他航空的話要打去其他航空,如果是UA自己的話,可以幫忙改,很快速(1–3 min)幫我改好了 雖然改好了國內UA線,但韓亞還是沒改,明天早起再打電話去改 Root Cause

United Airlines

2 min read

United Airline last name多了SR問題
United Airline last name多了SR問題
United Airlines

2 min read


Aug 8, 2022

[Eng blog: Doordash-22] Using a Multi-Armed Bandit with Thompson Sampling to Identify Responsive Dashers

🤗 Machine learning Engineer blog challenge (2/100) Doordash — 2022 Using a Multi-Armed Bandit with Thompson Sampling to Identify Responsive Dashers 🤔 What problem do they solve? 他們想要找到一個model去決定要對哪些dasher(運送員)發訊息去送貨,特別在尖峰時刻,supply 不夠多時候,如下圖所示

Machine Learning

2 min read

[Eng blog: Doordash-22] Using a Multi-Armed Bandit with Thompson Sampling to Identify Responsive…
[Eng blog: Doordash-22] Using a Multi-Armed Bandit with Thompson Sampling to Identify Responsive…
Machine Learning

2 min read


Jul 25, 2022

西南航空apply travel Fund issue [solved]-2022

這篇是最近遇到的一個小問題 我想要apply travel fund,但一直出現錯誤 如果其他人也有遇到,希望也可以幫助到大家 Solution 假設你的名字如下 First Name: Young Xun Last Name: Lee 記得改兩個地方! Who’s flying (我一開始這沒改,系統一直抱錯) Young / Xun / Lee Flight Credits Young / Lee

西南航空

2 min read

西南航空apply travel Fund issue [solved]-2022
西南航空apply travel Fund issue [solved]-2022
西南航空

2 min read


Jul 23, 2022

[Eng blog: Doordash-21] Using Triplet Loss and Siamese Neural Networks to Train Catalog Item Embeddings

🤗 Machine learning Engineer blog challenge (1/100) Doordash — 2021 Using Triplet Loss and Siamese Neural Networks to Train Catalog Item Embeddings (doordash.engineering) 🤔 What problem do they solve? 他們想要建構出 catalog(品項) embedding 首先什麼是catalog in Doordash (可能有誤解)? 同一家餐廳有很多的品項, 像是salmon sushi, boba tea, 而不同餐廳也可以share同個品項,每一家珍奶店都有個東西叫 “boba tea” 讓boba tea 有自己的representation, 不同家的boba tea share 一樣的representation -> 裡面blog可能沒明說(也許我看漏) 但我從他們後來用品項去建構store embedding,應該是考慮這狀況,而且這樣更可以solve cold-start issue (new store)

Machine Learning

3 min read

[Eng blog: Doordash-21] Using Triplet Loss and Siamese Neural Networks to Train Catalog Item…
[Eng blog: Doordash-21] Using Triplet Loss and Siamese Neural Networks to Train Catalog Item…
Machine Learning

3 min read


Jul 10, 2022

KDD 21':Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning (google)

🤗 Recommendation system paper challenge (31/50) paper link Google KDD 2021 🤔 What problem do they solve? 現有的MTL (multi-task learning) 沒有針對fairness進行優化,只有STL (single task learning)針對fairness進行優化 所以這篇paper在於解決 fairness on MTL的問題 😎 Contribution 定義新的metric: ARFG: 對每個task去計算MTL中的FPRGap跟STL的FPRGap的比值,在平均起來 ARE: 對每個task去計算MTL中的error rate跟STL的error rate的比值,在平均起來

Kdd2021

4 min read

KDD 21':Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning (google)
KDD 21':Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning (google)
Kdd2021

4 min read


Jul 7, 2022

KDD 21':Learning to Embed Categorical Features without Embedding Tables for Recommendation (google)

🤗 Recommendation system paper challenge (30/50) paper link Google KDD 2021

Google

10 min read

KDD 21':Learning to Embed Categorical Features without Embedding Tables for Recommendation (
KDD 21':Learning to Embed Categorical Features without Embedding Tables for Recommendation (
Google

10 min read


May 14, 2022

Hilton Aspire 航空報銷 手把手

Hilton Aspire link: AmEx Hilton Aspire 信用卡【2021.11 更新:Targeted 消费 8k 送一张 FN;150k 开卡奖励】 — 美国信用卡指南 (uscreditcardguide.com) 最近我申請了這張卡 算是我第一個高階卡吧 之前從來沒有報銷過航空 傻傻分不清 怎麼報銷 如果小夥伴有同樣的問題 也許可以參考這一篇 Step1: 註冊要報銷的航空 首先先去Amex 官方網站 Log In to My Account | American Express US 點選 “Benefits” 點選”Travel”, 找到 “$250 Airline Fee Credit”

信用卡

3 min read

Hilton Aspire 航空報銷 手把手
Hilton Aspire 航空報銷 手把手
信用卡

3 min read


Jan 3, 2022

KDD 19': Sampling-bias-corrected neural modeling for large corpus item recommendations

🤗 Recommendation system paper challenge (29/50) paper link 🤔 What problem do they solve? Large Scale item recommendation Given a query x, we would like to recommend items y from M items and we can observe reward (watch time) for each pair (x, y) Label: reward r (watch time) Train data: a pair (query x, item y, reward r) Model: two-tower model…

Kdd 2019

3 min read

KDD 21': Sampling-bias-corrected neural modeling for large corpus item recommendations
KDD 21': Sampling-bias-corrected neural modeling for large corpus item recommendations
Kdd 2019

3 min read


Dec 30, 2021

Federated Learning

KDD Invited Talks — Preserving Data Privacy in Federated Learning — Xiaokui Xiao 最近由於Apple, Google App Store隱私修改讓各個其他公司開始改良如何讓Machine learning 減少privacy leak問題 Federated Learning 最早由Google 2017年提出, 主要的概念就是在各個mobile用自己的data update local gradient再加密回傳過去cloud cloud 則是只update global data (沒有個人訊息的)得到global gradient Google那篇著重在細部架構如何implementation, 例如如何解決上傳速度還有latency的問題 KDD的演講則是著重在這個Federated Learning的前世今生跟未來展望

Kdd2021

3 min read

Federated Learning
Federated Learning
Kdd2021

3 min read

Arthur Lee

Arthur Lee

22 Followers

An machine learning engineer in Bay Area in the United States

Following
  • 數據分析那些事

    數據分析那些事

  • Pavel Kordík

    Pavel Kordík

  • MIT Media Lab

    MIT Media Lab

  • Eric Elliott

    Eric Elliott

  • Tim O'Reilly

    Tim O'Reilly

See all (34)

Help

Status

Writers

Blog

Careers

Privacy

Terms

About

Text to speech